viernes, 11 de junio de 2010

Biotecnologia vegetal

Introducción. Los avances de la ingeniería genética, que inicialmente se utilizaron en la producción de sustancias de uso médico, como la insulina, han llegado también al campo de la alimentación. Mediante la tecnología de ADN recombinante se producen actualmente enzimas de uso alimentario y, en los últimos años, se han obtenido y comercializado nuevas variedades de vegetales con propiedades especiales. Estas variedades representan ventajas importantes para los agricultores que las cultivan, al facilitar la lucha contra plagas de insectos o malas hierbas. Sin embargo, desde algunos sectores se ha cuestionado la utilización de estos vegetales con acusaciones como que representan un peligro para la salud de los consumidores o el medio ambiente. La ingeniería genética y los alimentos. En el campo de la producción de alimentos, la tecnología del ADN recombinante se está utilizando para varias aplicaciones, y sus perespectivas de futuro, en el aspecto científico y tecnológico, son prometedoras. Esas aplicaciones, presentes y futuras, corresponden a distintos tipos: •Modificación de vegetales. La modificación genética de vegetales es una actividad que acompaña a la civilización humana desde la aparición de la agricultura. Muchos de los vegetales más importantes cultivados actualmente, como el trigo, no guardan casi ninguna semejanza con sus parientes salvajes. La novedad de la utilización de la biotecnología está simplemente en la potencia y precisión de las herramientas utilizadas actualmente para la creación de nuevas variedades, no en el hecho en sí. En este momento, la obtención de vegetales transgénicos es el campo con mayores posibilidades de desarrollo, a partir de distintas aproximaciones. •Genes antisentido. El primer vegetal transgénico comercial, desarrollado por la empresa Calgene en 1994, fue el tomate Flavr Savr, resistente al ablandamiento al contener un gen antisentido de la poligalacturonasa. En este tomate, el gen antisentido produce la síntesis de un m-RNA complementario del m-RNA de la poligalacturonasa, que al unirse a él impide la síntesis del enzima. Este tomate no ha tenido éxito comercial, pero la aproximación es válida para la modificación de otros vegetales. Los genes antisentido no inducen la expresión de una proteína nueva, sino que evitan la de una existente en el vegetal no transgénico. Por el mismo sistema podría evitarse el pardeamiento enzimático, u otras alteraciones producidas por enzimas.
• Genes de resistencia a insectos. La resistencia a insectos está basada hasta ahora en los genes de las toxinas de Bacillus thuringiensis, una bacteria patógena para determinados lepidópteros. En particular, la toxina crylA(b) aparece en el maiz desarrollado por Monsanto en 1996. Esta proteína se une específicamente a determinados receptores que solamente existen en el tubo digestivo de algunos tipos de insectos, entre ellos, Ostrinia nubialis, el barrenador del maiz, endémico en algunas zonas. Consecuentemente su acción es muy selectiva, muchísimo mas que la de los insecticidas químicos. Para la inmensa mayoría de los animales (mamíferos, peces) es simplemente una proteína más, metabolizada como las demás proteínas. El mismo principio, con la misma toxina o con otras distintas, puede aplicarse a otros vegetales, y está siendo muy importante en el caso del algodón.


Ver animación sobre plantas transgénicas resistentes a insectos •Genes de resistencia a herbicidas. En este caso son posibles en principio dos aproximaciones. O bien insertar en la planta el gen de un enzima que no se vea inhibido por el herbicida o bien un enzima que inactive el herbicida. En el primero de estos casos tenemos la soja resistente al glifosato, en la que se ha insertado un gen bacteriano para el enzima enolpiruvilshikimato-3 fosfato sintetasa. Este enzima está implicado en la ruta biosintética de los aminoácidos aromáticos. El enzima equivalente de la soja es inhibido por el herbicida, pero el bacteriano no lo es, de tal forma que no se corta la correspondiente ruta metabólica, y la planta transgénica no se ve afectada. En consecuencia, puede usarse el herbicida en cualquier momento de desarrollo del cultivo, sin que éste se vea afectado. También se han desarrolado otros vegetales resistentes a herbicidas, como la colza (canola) resistente al glufosinato, obtenida por inserción en su genoma del gen de la fosfinotricin-acetiltransferasa de una bacteria. El glufosinato inhibe un enzima de la ruta biosintética de la glutamina, dando lugar a la acumulación de amionio. La fosfinotricin-acetil transferasa inactiva al glufosinato por acetilación, eliminando su actividad inhibidora. Existen ya variedades en las que se ha combinado un gen de resistencia a insectos con otro de tolerancia a herbicidas. •Cambios en la composición de vegetales. Los cambios en la composición de un vegetal comestible pueden permitir mejorar su calidad nutricional, tanto si se emplea en nutrición animal como en humana. Concretamente se puede modificar el patrón de aminoácidos de las proteínas, corrigiendo la deficiencia en lisina de los cereales o la deficiencia en aminoácidos azufrados de la proteína de soja. mas importante desde el punto de vista de la lucha contra el hambre y las enfermedades carenciales es el "arroz dorado", que contiene beta-caroteno y que debe ser una herramienta válida para luchar contra la mortalidad infantil y la ceguera asociada en varias zonas geográficas a la deficiencia de vitamina A en la dieta. En http://www.goldenrice.org/ se encuentra la página web de este proyecto.

Otras mejoras de este tipo pueden consistir en la obtención de productos alimentarios o para usos industriales no alimentarios modificando la composición de los lípidos. Em 1995 se desarrolló una variedad de colza (canola) cuyo aceite es muy rico en ácido láurico. En esta variedad está incluido el gen de la tioesterasa de la proteína transportadora de láurico, obtenido del laurel de California •Otras posibilidades Existen otras posibilidades de mejora vegetal, alguna de ellas, como la resistencia a virus, de la que ya existen algunas variedades comerciales. Aspectos como la resistencia al frío o a la salinidad son algo más complejos de abordar, ya que no dependen generalmente de un sólo gen sino de varios. De todos modos, los primeros resultados de laboratorio referentes a resistencia a la salinidad hacen pénsar que incluso estos problemas son menos complejos de resolver de lo que se pensaba inicialmente. Ventajas de los vegetales transgénicos. Aunque parezca obvio, debe decirse que su ventaja fundamental es que tienen la propiedad (resistencia a insectos o a herbicidas, por ejemplo) que se buscaba con su obtención. Ahora bien, estas ventajas no resultan casi nunca evidentes para los consumidores, ya que las repercusiones económicas, como costos de producción menores, mayor facilidad de cultivo o necesidad de menores subvenciones agrarias no se han trasladado por el momento hacia ellos en forma de nuevos productos, precios menores, etc. Además, dado que los cultivos más importantes (maiz, soja) no se comercializan directamente, sino que son materias primas para otras industrias o se utilizan en alimentación animal, es razonable pensar que este traslado de beneficios nunca se va a producir. Las ventajas medioambientales por menor uso de insecticidas son también pequeñas, y tampoco los consumidores las aprecian directamente. Consecuentemente, puesto que no ven ventajas personales, no pueden hacer un balance riesgo/beneficio proporcionado, aun que los riesgos sean ínfimos, no aceptan asimirlos para un beneficio (personal) aparentemente nulo. A las organizaciones que se oponen sistemáticamente a la biotecnología les resulta pues muy fácil ganar opiniones. ¿Representa los vegetales trasgenicos un problema? En los últimos años, desde algunos sectores sociales concretos se ha cuestionado la utilización de vegetales transgénicos acusándolos de representar un peligro para la salud de los consumidores o el medio ambiente, aunque sin definir un riesgo concreto. Sorprendentemente, a mayor vaguedad del riesgo, mayor es la inquietud que suele generar entre los consumidores. Al contrario de lo que sucede con las variedades vegetales obtenidas por técnicas convencionales, o de los vegetales, nuevos para nosotros como alimento, procedentes de otras regiones del mundo, las variedades transgénicas son sometidas a procesos de evaluación individual de riesgos, tanto en lo que afecta a la seguridad de los consumidores como en lo referente al medio ambiente.

•Para la salud del consumidor.


El riesgo que aparece a primera vista es la posibilidad de que, al introducirse una proteína "extraña" en el alimento (la toxina o el enzima bacteriano, por ejemplo) pudieran aparecer reacciones de alergia en algunos consumidores. La experiencia del uso desde hace bastantes años de las toxina de Bacillus thuringiensis, en la "agricultura biológica" sin que se hayan indicado casos de alergia hace que no parezca probable su aparición al encontrarse dentro de un transgénico. Lo mismo puede decirse de las otras proteínas, de las que por el momento tampoco se conoce un solo caso de alergia a ellas.En cuanto a los genes transferidos, el único que pudiera considerarse cuestionable es el de resistencia a un antibiótico, gen utilizado como auxiliar en algunos transgénicos. En condiciones naturales, el paso del gen de resistencia desde el vegetal a las bacterias es extremadamente difícil, y en cualquier caso, ese paso, de producirse, sería insignificante compararado con la propia presencia del gen de resistencia en la población natural. El grave problema de las resistencias a antibióticos no se debe tanto a la existencia de los genes de resistencia como a la presión de selección inducida por un uso incorrescto de los antibióticos en medicina humana o animal.


A esto hay que añadir que en la mayoría de los casos, los productos que se consumen no son los propios vegetales, sino materiales muy elaborados, como la glucosa obtenida del almidón del maiz o el aceite en el caso de la soja, materiales en los que no hay ni DNA ni proteínas.


• Efectos sobre el medio ambiente.


Desde el punto de vista medioambiental, los vegetales transgénicos con genes de resistencia a insectos representan una ventaja medioambiental desde el momento en que reducen la utilización de insecticidas químicos, menos específicos que el presente en el propio vegetal. También los genes de tolerancia a herbicidas pueden representar una ventaja medioambiental al permitir una mejor gestión del uso de los herbicidas, utilizando aquellos que son menos tóxicos y persistentes (glifosato y glufosinato) pero que presentaban problemas precisamente por su falta de selectividad.


El riesgo de paso de los genes de resistencia a plantas salvajes se ha planteado como una posibilidad de creación de "supermalezas". Este planteamiento olvida que esto solamente es posible por polinización entre especies muy próximas, que en los casos de soja y maiz no existen en Europa, y que, en cualquier caso, los parientes salvajes de las plantas cultivadas no han representado nunca un problema como "malas hierbas".


En cuanto al riesgo de que el polen del maiz transgénico pueda afectar a insectos no diana, los experimentos en condiciones de campo han demostrado que es mínimo, mucho menor que si se usan insecticidas químicos. Por supuesto, en otros transgénicos distintos pueden aparecer riesgos ecológicos reales, como en le caso de los peces gigantes o de crecimiento acelerado, que exigen un estudio detallado antes de su autorización. • Riesgos agronómicos y socioeconómicos


En el caso de la utilización de transgénicos con proteínas insecticidas, es perfectamente posible la aparión de fenómenos de resistencia en insectos diana, lo mismo que ha sucedido en el caso de la utilizacioón de insecticidas químicos. La gestión de este problema exige el mantenimiento de áreas sembradas con maiz no transgénico, para disminuir la presión de selección y retardar la aparición de poblaciones resistentes.

Como es lógico, las semillas transgénicas son más caras que las tradicionales, y además las empresas productoras intentan evitar la práctica tradicional de "autosuministro" de semillas para años sucesivos. Aún así, los cultivos transgénicos son suficientemente más rentables para que compensen el mayor gasto en la semilla. En el caso del algodón, el mejor evaluado, el incremento de peroductividad se reparte casi por igual entre la empresa biotecnológica y el agricultor, sin que se traslade prácticamente nada a los compradores, y menos aún al consumidor final.

viernes, 12 de febrero de 2010

Erosion glaciar

Descripcion:
La erosion glaciar es el proceso de abrasión que causa el hielo al desplazarse lentamente por el terreno. Esta proceso es causado por glaciares.
Durante el día, el sol (o la temperatura si es en sombría) puede derretir parte del hielo de la superficie del glaciar, convirtiendolo en agua que puede filtrarse en las rocas y congelarse a la noche. Éste hielo se expande ganando volumen, por lo tanto, crea brechas en la roca que potencialmente puede romperla.
Glaciar:
El glaciar es una gruesa masa de hielo que se origina en la superficie terrestre por acumulación, compactación y recristalización de la nieve, mostrando claros desplazamientos en el pasado o en la actualidad. Su existencia es posible cuando la precipitación anual de nieve supera la evaporada en verano, por lo cual la mayoría se encuentra en zonas cercanas a los polos, aunque existen en otras zonas montañosas. El proceso del crecimiento y establecimiento del glaciar se llama glaciación. Consta de tres partes: cabecera o circo, lengua y valle o zona de ablación.
Formacion:
Los glaciares se forman en áreas donde se acumula más nieve en invierno que la que se funde en verano. Cuando las temperaturas se mantienen por debajo del punto de congelación, la nieve caída cambia su estructura ya que la evaporación y recondensación del agua causan la recristalización para formar granos de hielo más pequeños, espesos y de forma esférica. A este tipo de nieve recristalizada se la conoce como neviza. A medida que la nieve se va depositando y se convierte en neviza, las capas inferiores son sometidas a presiones cada vez más intensas. Cuando las capas de hielo y nieve tienen espesores que alcanzan varias decenas de metros, el peso es tal que la neviza empieza a desarrollar cristales de hielo más grandes.
En los glaciares de montaña, el hielo se va compactando en los circos, que vendrían a ser la zona de acumulación equivalente a lo que sería la cuenca de recepción de los torrentes. En el caso de los glaciares continentales, la acumulación sucede también en la parte superior del glaciar pero es un resultado más de la formación de escarcha, es decir, del paso directo del vapor de agua del aire al estado sólido por las bajas temperaturas de los glaciares, que por las precipitaciones de nieve. El hielo acumulado se comprime y ejerce una presión considerable sobre el hielo más profundo. A su vez, el peso del glaciar ejerce una presión centrífuga que provoca el empuje del hielo hacia el borde exterior del mismo donde se derrite; a esta parte se la conoce como zona de ablación.
Clases:
Glaciar alpino: Esta clase incluye a los glaciares más pequeños, los cuales se caracterizan por estar confinados en los valles montañosos: razón por la que se los denomina glaciares de valle o alpinos o de montaña, la tasa de alimentación de nieve es elevada y su velocidad también: 60m/mes.
Casquete glaciar: Consiste en enormes capas de hielo que pueden cubrir una cadena montañosa o un volcán; su masa es menor que la presente en los glaciares continentales. Estas formaciones cubren gran parte del archipiélago de las islas noruegas de Svalbard, en el Océano Glacial Ártico.
Glaciar continental de casquete: Los glaciares más grandes son los glaciares continentales de casquete: enormes masas de hielo que no son afectadas por el paisaje y se extienden por toda la superficie, excepto en los márgenes, donde su espesor es más delgado. La Antártida y Groenlandia son actualmente los únicos glaciares continentales en existencia. Estas regiones contienen vastas cantidades de agua dulce. El volumen de hielo es tan grande que si Groenlandia se fundiera causaría que el nivel de mar aumentase unos 21 m a nivel mundial, mientras que si la Antártida lo hiciera, los niveles subirían hasta 108 m. La fusión combinada resultaría en una elevación de cerca de 130 m.
Movimiento:
El hielo se comporta como un sólido quebradizo hasta que su acumulación alcanza los 50 metros de espesor. Una vez sobrepasado este límite, el hielo se comporta como un material plástico y empieza a fluir. El hielo glaciar consiste en capas de moléculas empaquetadas unas sobre otras. Las uniones entre las capas son más débiles que las existentes dentro de cada capa, por lo que cuando el esfuerzo sobrepasa las fuerzas de los enlaces que mantienen a las capas unidas, éstas se desplazan unas sobre otras.
El desplazamiento de un glaciar no es uniforme ya que está condicionado por la fricción y la fuerza de gravedad. Debido a la fricción, el hielo glaciar inferior se mueve más lento que las partes superiores. A diferencia de las zonas inferiores, el hielo ubicado en los 50 metros superiores, no están sujetos a la fricción y por lo tanto son más rígidos. A esta sección se la conoce como zona de fractura. El hielo de la zona de fractura viaja encima del hielo inferior y cuando éste pasa a través de terrenos irregulares, la zona de fractura crea grietas que pueden tener hasta 50 metros de profundidad.
La velocidad de desplazamiento de los glaciares está determinada por la fricción y la pendiente. Como se sabe, la fricción hace que el hielo de fondo se desplace a una velocidad menor que las partes superiores. En el caso de los glaciares alpinos, esto también se aplica para la fricción de las paredes de los valles, por lo que las regiones centrales son las que presentan un mayor desplazamiento.
Como erosiona:
Las rocas y los sedimentos son incorporados al glaciar por varios procesos. Los glaciares erosionan el terreno principalmente de dos maneras: abrasión y arranque.
A medida que el glaciar fluye sobre la superficie fracturada del lecho de roca, ablanda y levanta bloques de roca que incorpora al hielo. Este proceso conocido como arranque glaciar, se produce cuando el agua de deshielo penetra en las grietas y las diaclasas del lecho de roca y del fondo del glaciar y se hiela recristalizándose. Conforme el agua se expande, actúa como una palanca que suelta la roca levantándola. De esta manera, sedimentos de todos los tamaños entran a formar parte de la carga del glaciar.
La abrasión ocurre cuando el hielo y la carga de fragmentos rocosos se deslizan sobre el lecho de roca y funcionan como un papel de lija que alisa y pule la superficie situada debajo. La roca pulverizada por la abrasión recibe el nombre de harina de roca.

Erosión Glacial

viernes, 27 de noviembre de 2009

Trabajo sobre el azufre


El azufre (s) es un elemento nativo de subclase no metalico.
Etimología: Del latín "sulphur", nombre del mineral.

Cristalografía:
Sistema y clase:Rómbico holoédrico

Líneas de DRX (intensidades) d´s:: 7.76(4) - 5.75(5) - 3.90(10) - 3.48(4) - 3.24(6).

Propiedades físicas:
Color: Amarillo
Raya: Más clara
Brillo: Graso o sedoso
Dureza: 1.5 a 2.5
Densidad: 2.07 g/cm3
Óptica: Biáxico positivo con ángulo 2V = 69o
Otras: Marcada fractura concoidea. Arde con facilidad.

Química: Azufre puro, pero puede contener varias partes de selenio.

Forma de presentarse: Cristales con formas piramidales o bipiramidales con truncamientos de vértices. También en masas irregulares, estalactíticas, como incrustaciones y terroso.


Génesis:
En terrenos con actividad volcánica, como producto de sublimación.

Por reducción de sulfatos, especialmente yeso.

Como depósito de aguas bacteriológicas.

Filoniano, asociado a sulfuros y formado por la oxidación de estos.

En rocas sedimentarias terciarias arcillosas.

Yacimientos en España:

Yacimientos de origen volcánico en las Islas Canarias en Tinguaro, Santa María (Tenerife) y otros yacimientos de carácter sedimentario en distintas provincias, siendo los más importantes los que encajan en las margas yesíferas del mioceno. Especialmente buenos son algunos ejemplares prodecentes de Conil (Cádiz)

Empleo: Como abono e insecticida; para la fabricación de ácido sulfúrico y de caucho. También se usa en producción de jabón, textiles, papel, piel, tintes y en refinado de petróleo.


Presentación tomada de internet.

miércoles, 7 de octubre de 2009

Trabajo sobre el olivino.


El olivino es un mineral de clase silicato y de subclase nesosilicato.

Silicato de hierro y magnesio. Se presenta en masas granulares, siendo raros los cristales bien formados y limpios. Es una de las especies más comunes y se lo considera uno de los constituyentes fundamentales del "manto" de la Tierra.
Las rocas ígneas más ricas en olivino son la dunita, compuesta casi exclusivamente por este mineral, y la peridotita, que posee olivino y piroxeno. Se usa como arena de fundición y como un fundente en la fabricación de acero.
El olivino es un mineral formado por dos tipos de silicato por una mezcla isomorfa de fayalita y forsterita, cristaliza en el sistema rómbico piramidal.

PROPIEDADES FISICAS:

Brillo: Vítreo.

Dureza: 6,5 en la escala de Mohs.

Color: Varía desde el amarillento al verde oliva, o grisáceo hasta el castaño.

Densidad relativa: Entre 3,00 y 4,00.

Densidad: 3,5 g/cm³

Fractura: Exfoliación no muy evidente.

Sistema cistalino: Ortorrómbico.

Formula: (Mg,Fe)2SiO4



Los yacimientos mas importantes en España se encuentran en Cataluña, Canarias y Baleares.

Yacimientos mas importantes de Baleares:

Soller(Mallorca).

Yacimientos mas importantes de Canarias:

Fuerteventura.
Lanzarote.

viernes, 2 de octubre de 2009

Presentación:

Hola soy Álvaro de la clase 4º3 y he cogido esta asignatura porque me cae bien el profesor Javier, pero sobre todo porque me interesa mucho la biologia e I.V.L. no me valia para nada en estos momentos ya que yo voy a seguir con bachillerato.